首页> 外文OA文献 >Quantification, prediction and the online impact of sentence truth-value:Evidence from event-related potentials
【2h】

Quantification, prediction and the online impact of sentence truth-value:Evidence from event-related potentials

机译:量化,预测和句子真值的在线影响:来自事件相关电位的证据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Do negative quantifiers like ‘few’ reduce people’s ability to rapidly evaluateincoming language with respect to world knowledge? Previous research has addressed this question by examining whether online measures of quantifier comprehension match the ‘final’ interpretation reflected in verification judgments. However, these studies confounded quantifier valence with its impact on the unfolding expectations for upcoming words, yielding mixed results. In the current ERP study, participants read negative and positivequantifier sentences matched on cloze probability and on truth-value (e.g., “Most/Few gardeners plant their flowers during the spring/winter for best results”). Regardless of whether participants explicitly verified the sentences or not, true-positive quantifier sentences elicited reduced N400s compared to false-positive quantifier sentences, reflecting the facilitated semantic retrieval of words that render a sentence true. No such facilitation was seen in negative quantifier sentences. However, mixed-effects model analyses (with cloze value and truth-value as continuous predictors) revealed that decreasing cloze values were associated with an interaction pattern between truth-value and quantifier, whereas increasing cloze values were associated with more similar truth-value effects regardless of quantifier. Quantifier sentences are thus understood neither always in two sequential stages, nor always in a partial-incremental fashion, nor always in a maximally incremental fashion. Instead, andin accordance with prediction-based views of sentence comprehension, quantifier sentence comprehension depends on incorporation of quantifier meaning into an online, knowledge-based prediction for upcoming words. Fully incremental quantifier interpretation occurs when quantifiers are incorporated into sufficiently strong online predictions for upcoming words.
机译:否定词(例如“很少”)会降低人们针对世界知识快速评估传入语言的能力吗?先前的研究通过检查在线量词理解理解的量度是否与验证判断中反映的“最终”解释相吻合,从而解决了这个问题。然而,这些研究混淆了量词的价位,因为它对即将出现的单词的不断发展的期望产生影响,产生了不同的结果。在当前的ERP研究中,参与者阅读的消极和积极的量词与完形概率和真值匹配(例如,“大多数/很少的园丁在春季/冬季种花以取得最佳效果”)。不管参与者是否明确验证了句子,与假阳性量词句子相比,真阳性量词句子引起的N400减少,反映了使句子变为真实的单词的语义检索变得容易。在否定的量词句子中没有看到这样的促进。但是,混合效果模型分析(以完工填值和真实值作为连续的预测变量)显示,完工填值的降低与真实值和量词之间的交互方式相关,而提高完工填值的结果与更相似的真实值效果相关无论量词。因此,量词的句子既不总是以两个连续的阶段来理解,也不总是以部分增量的方式来理解,也不总是以最大增量的方式来理解。取而代之的是,根据句子理解的基于预测的观点,量词的句子理解取决于将量词含义并入在线的,基于知识的对即将到来的单词的预测中。当将量词合并到足够强的即将到来的单词的在线预测中时,就会发生完全增量的量词解释。

著录项

  • 作者

    Nieuwland, Mante;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号